ETUDE SUR LA NUTRITION DU CACHALOT DANS LE SANCTUAIRE POUR LES MAMMIFERES MARINS EN MEDITERRANEE

AUTEUR : Alexandre GANNIER

Centre de Recherche sur les Cétacés

Rapport final

Date du rapport : 2002
Etude sur la nutrition du cachalot dans le sanctuaire pour les mammifères marins en Méditerranée.

Etude réalisée par le Centre de Recherche sur les Cétacés (Marineland, Antibes) avec la participation du Groupe de Recherche sur les Cétacés (Antibes)

-2002-

Rapport final
SOMMAIRE

1. INTRODUCTION ... 3

2. OBJECTIFS DU PROJET ... 3

3. EQUIPEMENT ET METHODES ... 4
 A. Equipement et moyens humains .. 4
 1. Equipement matériel .. 4
 2. Moyens humains ... 4
 B. Méthode de terrain ... 5
 1. Recherche active ... 5
 2. Etude de comportement ... 6
 C. Méthode d’analyse .. 6
 1. Analyse des données d’observation 6
 2. Analyses des enregistrements acoustiques 7

4. RESULTATS ... 8
 A. Effort d’échantillonnage ... 8
 B. Cycle de sondes .. 8
 C. Taux d’émission de clics d’écholocalisation 8
 D. Taux de prédation et profondeur de nourrissage 9
 E. Déplacements et utilisation de l’habitat 10

5. CONCLUSION .. 11

REFERENCES BIBLIOGRAPHIQUES ... 12
1. INTRODUCTION

Les récents travaux du GREC et du CRC ont permis d’obtenir une vision globale de la distribution du cachalot (*Physeter macrocephalus*) sur l’ensemble de la Méditerranée (Gannier *et al.*, 2002). Il apparaît notamment que des individus de grande taille et généralement solitaires en surface fréquentent la zone du sanctuaire marin et le Nord du bassin occidental en général comme zone principale de nourrissage. Cependant, bien que la distribution du cachalot soit relativement bien connue dans le Nord du bassin occidental, les facteurs déterminant sa répartition sont eux très peu connus du fait (1) du mode de vie de ces animaux qui passent la plupart de leur temps en plongée, (2) des connaissances très limitées concernant leurs proies principales: les céphalopodes, (3) des lacunes concernant l’ensemble de la chaîne alimentaire dont ils constituent le dernier maillon.

Il apparaît donc indispensable d’approfondir nos connaissances sur cette espèce et les relations qu’elle entretient avec son milieu afin de mieux cibler les facteurs qui influencent sa répartition et être ainsi en mesure de protéger son habitat.

2. OBJECTIFS DU PROJET

Ce rapport présente le compte rendu de la campagne conduite en été 2002 sur la nutrition du cachalot dans le sanctuaire marin de Méditerranée. Cette étude a permis de compléter les bases de données existantes du GREC et du CRC, et ainsi d’apporter des éléments quant à la fréquentation des sites de nourrissage ainsi que des résultats robustes sur le comportement et l’activité de prédation. Plus précisément, les principaux objectifs de cette étude étaient :

- Étudier avec précision les cycles de sonde (temps de plongée et de surface);
- Déterminer la profondeur moyenne à laquelle les cachalots trouvent leur nourriture par une étude approfondie des clics d’écholocations émis pendant la plongée ;
- Quantifier le nombre de proies ingérées par le cachalot, par une analyse des vocalises associées à la prise de nourriture, les ‘creaks’ ;
- Suivre les déplacements des cachalots afin d’avoir une idée de l’étendue géographique de la niche écologique qu’ils occupent.
- Vérifier la fidélité aux sites identifiés comme lieux de nourrissage privilégiés.
3. EQUIPEMENT ET METHODES

L'étude de terrain s'est déroulé du 6 au 15 août 2002 dans de bonnes conditions météorologiques. Chaque sortie en mer comportait deux phases :

1. une recherche active des animaux, qui nécessite une méthodologie combinant un échantillonnage acoustique (écoute à l’hydrophone) et l’observation visuelle (méthode du transect linéaire). En effet, seule l’acoustique permet de détecter à coup sûr les cachalots pendant leur sonde.

2. L’observation et le suivi des animaux en surface (observations visuelles et enregistrements acoustiques) et pendant la sonde (suivi acoustique).

A. Equipement et moyens humains

1. Equipement matériel

Le GREC a mis à disposition un voilier fifty de 12 mètres, doté de matériel de navigation approprié (2 GPS et un pilote automatique) ainsi que le matériel spécifique à l’étude, incluant :

- une paire de jumelles 7x50 munies d’un réticule d’azimut et d’un compas interne,
- un thermomètre digital mesurant la température superficielle de l’eau de mer,
- un hydrophone remorqué double muni de son amplificateur,
- un hydrophone remorqué simple muni de son amplificateur (en secours),
- deux boîtiers de filtres modulables,
- un enregistreur numérique de type DAT Sony TCD-8
- un enregistreur analogique de type Sony WM D6C (en secours),

La bande passante du système acoustique utilisé s’étend de 200 Hz à 22 kHz (DAT). Le filtre analogique modulable de 0 à 3000 Hz est réglé généralement en position «passe-haut 400 Hz ou 1600 Hz», il permet d’améliorer la qualité d’écoute.

2. Moyens humains

Durant l’étude, 6 équipiers présents à bord se sont partagés l’ensemble des tâches. L’équipage comprenait trois personnes du CRC (dont le responsable de l’étude et skipper du bateau) également membres du GREC et trois membres du GREC. Au total, 6 personnes différentes

B. Méthode de terrain

1. Recherche active

La recherche active des cachalots reposait sur la combinaison d’une surveillance visuelle et d’un échantillonnage acoustique. L’échantillonnage s’est fait de manière non-aléatoire, le long de trajets linéaires : en se basant sur des études préliminaires, nous avons concentré notre effort sur des zones connues comme étant fréquentées régulièrement par le cachalot en été, principalement les eaux du talus continental, le long des côtes françaises. Une zone plus au large, au centre du bassin nord-occidental a également été prospecté (Figure 1).

La surveillance visuelle consiste en une observation continue du secteur avant et de chaque coté du bateau suivant un transect pré-déterminé, à une vitesse constante de 5 nœuds. Deux observateurs sont en fonction sur le roif du bateau, avec les yeux à 3 mètres d’altitude, et couvrent les secteurs de 30° à 90° de chaque côté du bateau. Un observateur est debout devant le mât et scrute le secteur +/- 45°. Un observateur sumunénaire assure la fonction de secrétaire et consigne les renseignements recueillis. La détection des cétacés s’effectue à l’œil nu, des jumelles étant utilisées pour la confirmation de l’identification et la collecte des données de l’observation.

L’étude acoustique consiste à faire une écoute tous les 2 milles nautiques le long du transect, par un hydrophone tracté à l’arrière du bateau, pour détecter la présence de cachalots. Le résultat de l’écoute est consigné sur un livre de bord, et transcrit sur une base de données informatique grâce à l’ordinateur portable embarqué. S’il y a audition de cétacés, le niveau du signal capté est classé sur une échelle de 1 à 5 et le type de signal est consigné. De même, le niveau du bruit ambiant est classé sur une échelle de 1 à 5, et nous mentionnons éventuellement le type de bruit prépondérant (navire de commerce, par exemple). Lors de la station d’écoute sur des cachalots, l’opérateur consigne tous les sons particuliers. Lorsqu’un
cachalot est détecté avec un niveau suffisant (niveau 3 et plus), les vocalisations émises sont enregistrées en continu et la distance entre les écoutes est réduite à un mille nautique. Lorsque le signal atteint un niveau 5 (maximal), le bateau est mis à l’arrêt et la surveillance visuelle est étendue sur 360°. Pendant toute la période de sonde, le cachalot émet des clics qu’il est possible de détecter jusqu’à 8 km environ.

2. Étude de comportement.

Une fois le cachalot repéré visuellement, nous nous approchons de l’animal afin de permettre une bonne observation. Une distance minimale de 50 m est maintenue entre l’animal et le bateau, afin de minimiser le dérangement occasionné par la présence du bateau. Pendant la phase d’observation du cachalot en surface, différentes informations sont notées avec le plus de précision possible :
- **Ti** : Temps initial de la sonde, marqué par l’instant où la nageoire caudale disparaît de la surface;
- **Tf** : Temps finale de la sonde, instant où l’animal apparaît en surface.
- **Pi** : Position initiale de l’animal en début de sonde
- **Pf** : Position finale de l’animal en fin de sonde
- **Ns** : Nombre de souffles pour chaque période de récupération en surface
- **Estimation** de la taille de l’animal

Pendant les périodes d’observation, les vocalisations des cachalots sont enregistrées de façon systématique sur cassettes DAT pour des analyses ultérieures. Une fois que l’animal a entamé une nouvelle sonde, l’écoute et l’enregistrement acoustique sont maintenus : le bateau est dirigé dans la direction du signal le plus fort afin de ne pas perdre le contact acoustique avec l’animal.

C. Méthode d'analyse

1. Analyse des données d’observation

D'après les temps de sondes (Ti et Tf) et la position de animaux lors de sondes successives, les périodes de plongée, de respiration en surface et le cycle complet de sonde (plongée+surface) ont pu être calculés, ainsi que le nombre de respirations effectuées par
période de surface pour chaque cachalot observé. Les distances parcourues par le cachalot (distance directe) au cours d’un cycle de sonde (entre deux débuts de sonde) ont aussi été mesurées grâce au logiciel Edipe-Karto (Massé et Cadiou, 1993).

2. Analyses des enregistrements acoustiques

Une écoute de l’ensemble des enregistrements a été effectuée, les enregistrements effectués sur DAT permettant de noter l’heure exacte des événements acoustiques.

En laboratoire, une analyse plus poussée des vocalisations émis par le cachalot en plongée a été effectuée. Le taux d’émission des clics d’écholocations émis par le cachalot au cours de la sonde a été particulièrement bien étudié. Les séquences acoustiques présentant un bon rapport signal/bruit ont été re-digitalisées et filtrées à l’aide d’un programme adapté, Spike 2 qui permet de marquer chaque clic émis par le cachalot à l’aide d’un curseur. L’intervalle de temps séparant les clics, aussi appelé « l’inter-click interval » (ICI), a ainsi pu être calculer et le taux de clics (1/ICI), exprimé en s-1, représenté graphiquement. Les périodes de silence et les « creaks », vocalises liées à la prise de nourriture (Goold 1999; Gordon, 1987), ont également été mesurées avec précision. Une extrapolation de ces données a permis d’estimer la profondeur des animaux (Zw) au cours de leur descente, suivant la formule :

\[Z_w = Z - (ICI \cdot c) / 2 \] \hspace{1cm} (1)

ou Z est la profondeur du fond (en m), c est la vitesse du son dans l’eau (1520 m.s⁻¹) et ICI l’Inter-Click Interval (en s).

La vitesse de descente (VD) du cachalot en début de sonde a ensuite était calculée :

\[VD = (Z_{wF} - Z_{wI}) / \Delta t \] \hspace{1cm} (2)

ou \(Z_{wF} \) and \(Z_{wI} \) représentent les profondeurs initiales et finales du cachalot de sondes (d’après l’équation 1); et \(\Delta t \) l’intervalle de temps (3 minutes après l’émission du 1er clic de sonde). Pour certaines séquences où l’écho des clics réfléchi par le fond était détectable lors de l’analyse acoustique, l’intervalle entre l’écho et le clic suivant était mesuré.
4. RESULTATS

A. Effort d'échantillonnage

L'étude représente 356 milles nautiques de surveillance visuelle combinée à l'échantillonnage acoustique (Figure 1), parcours dans de bonnes conditions météorologiques. Les détections acoustiques successives de cachalots ont été regroupées en sept séquences acoustiques dont 5 ont donné lieu à l'observation visuelle des animaux en surface. À chacune de ces occasions, une seul animal était visible en surface. Les cachalots observés ont pu être suivis sur plusieurs cycles de sondes en maintenant le contact acoustique pendant que l'animal était en plongée. Un cachalot a pu être suivi pendant six cycles complets, tandis que les autres observations comprenaient 1 à 2 cycles.

B. Cycle de sondes

Pendant cette étude, nous avons pu observer 10 cycles complets, périodes de surface et de plongée incluses, effectués par cinq animaux en activité de nourrissage.

En cumulant ces données à celles recueillies lors des campagnes de suivi conduites en 2001 (21 cycles de sondes complets au total), il apparaît que dans la zone étudiée les cachalots effectuent des sondes de 46.1 minutes en moyenne (SD=6.8). Sur l'ensemble des observations, le temps moyen passé en surface était de 9.1 minutes (SD=2.7) par cycle de sonde, avec 41 respirations (SD=9.1). Ainsi, le cycle de sonde des cachalots (incluant temps de plongée et de respiration en surface) était de 54.9 minutes en moyenne, avec peu de variations d'un cachalot à l'autre (de l'ordre de 10 minutes). Il apparaît que chaque individu maintenait un cycle de sonde très constant au cours du temps.

C. Taux d'émission de clics d'écholocalisation

Il a été montré que le cachalot effectue généralement des sondes en 'U', c'est à dire qu'il plonge verticalement jusqu'à atteindre une profondeur dite 'de nourrissage' à partir de laquelle il recherche ses proies en se déplaçant horizontalement le long de ce niveau bathymétrique, puis, en fin de plongée remonte directement et verticalement vers la surface (Gordon, 1987).
Parmi les enregistrements acoustiques, 18 séquences de clics de cachalot émis en début de sonde ont été sélectionnées et analysées. Une représentation graphique du taux de clics a été réalisée pour chacune de ces séquences. Un exemple est donné en Figure 2, où les différentes phases de descente, de nourrissage et de remontée, ainsi que la présence des ‘creaks’ apparaissent clairement. Après analyse de ces graphiques, il est apparu que la profondeur du fond influençait le taux d’émission de clics. Dans des eaux profondes (>1800m de fond) les cachalots maintiennent un rythme d’émission de clics remarquablement constant lors de la phase de descente, en moyenne 0.9 clic.s\(^{-1}\). Dans les eaux moins profondes (>1400m) le taux d’émission de clics était clairement influencé par la réflexion du fond, le cachalot émettant un clic immédiatement après réception de l’écho du clic précédent. Le taux de clics augmentait ainsi généralement de façon continue et progressive à mesure que l’animal s’approchait du fond (Figure 3 A). Ces résultats nous ont permis d’extrapoler la profondeur de l’animal lors de l’émission chaque clic (Figure 3 B) et une vitesse moyenne de descente de 110.6m/min à été obtenu pour les cachalots en début de sonde.

D. Taux de prédation et profondeur de nourrissage

L’analyse des enregistrements effectués lors de l’étude 2001 nous a permis d’évaluer un taux moyen de 23.4 creacts émis lors de chaque sonde (SD=3.8). En s’appuyant sur l’hypothèse que l’émission d’un ‘creak’ correspond à l’ingestion d’une proie, et notamment d’un céphalopode, le taux moyen de 23.8 creaks/heure correspondrait à 571 calmarcs mangés par jour (24h). Il est remarquable que ces résultats, basés sur des moyens acoustiques passifs, soient en accord avec des travaux effectués sur les contenus stomacaux (Clarke, 1987) démontrant qu’un cachalot mange en moyenne 2000 céphalopodes sur une période d’un à deux jours et demi.

En moyenne, les cachalots émettaient le premier ‘creak’ de la plongée 6min27s après avoir sondé. Nos résultats précédents, démontrant une vitesse de descente de 110.6m/min en moyenne, nous permettent de suggérer que le cachalot commence son activité de prédation lors qu’il atteint une profondeur avoisinant les 719 mètres.

Les enregistrements acoustiques montrent également que les cachalots s’arrêtaient de cliquer 5.6 minutes (SD=1.17) avant de refaire surface. Sachant que le cachalot s’arrête de cliquer lors qu’il entreprenant sa remonter vers la surface et se basant sur une vitesse de remontée de
84m/min (Watkins et al., 2002), nos résultats suggèrent que le cachalot termine son activité de chasse à une profondeur de 470m en moyenne.

Ainsi la profondeur de nourrissage des cachalots dans le bassin nord-occidental se situe entre 470 et 719m de profondeur. Notre analyse suggère que les cachalots trouvent leurs proies en pleine eau, et non à proximité du fond (la profondeur étant, pour chaque sonde observée, supérieure à 1000m). Ces résultats sont concordants avec l'habitat pelagique de nombreuses espèces de céphalopodes faisant parties du régime alimentaire du cachalot. Plusieurs de ces espèces sont présentes en Méditerranée et seraient susceptibles de répondre aux besoins alimentaire du cachalot, comme Histiotethis bonnellii, Gonatus fabricci et Chiroteuthis veranyi (Arbocco, 1958; Clarke, 1985 ; Morales, 1962)

E. Déplacements et utilisation de l'habitat

Les détections acoustiques continues de cachalot pendant la période d'étude (Figure 4) confirme la présence du cachalot le long du talus continental des côtes françaises et l'utilisation de cet habitat comme lieu privilégié de nourrissage. Les positions des observations de cachalots montrent peu de variations entre les études 2001 et 2002, de l'ordre de 6 à 12 milles nautiques (Figure 5), suggérant non seulement une fréquentation régulière en été mais également une fidélité au site de nourrissage.

Au cours de chaque cycle de sonde, les cachalots effectuent des déplacements relativement important, parcourant une distance de 1.24 milles (soit 2.3 km) en moyenne (SD=0.47) et suivant une direction relativement constante. Il apparaît donc que le cachalot ne reste pas sur le même secteur d'une sonde à l'autre, mais suit une direction cohérente d'une sonde à l'autre, en longeant parfois le talus continental, plus ou moins parallèlement aux isobathes 200 et 2000m. Pendant ces périodes de suivi (à l'échelle d'une journée), les animaux n'ont jamais fait demi-tour pour rester sur la même zone. Les deux cachalots suivis le long du talus pendant 5 à 6 cycles de sondes en 2001 et 2002, maintenaient un cap Nord-Est en longeant le talus continental, contre le courant ligure. La direction suivie par les autres cachalots était plus ambiguë, du fait d'un suivi moins long (1 à 3 cycles de sondes). Il serait important de vérifier si la direction Nord Est le long des côtes de Provence est un mouvement régulier, faisant partie d'un circuit plus général, peut-être autour du bassin liguro-provençal (à l'échelle
de la semaine et du mois), ou si le parcours est plus aléatoire. Il est important de noter que des cachalots ont également été observés au large; il serait donc intéressant de déterminer si leur présence au centre du basin est liée à un passage régulier par cette zone caractérisée par un système frontale stable.

5. CONCLUSION

Cette première étude a permis de décrire plus précisément les cycles de sondes des cachalots en activité de nourrissage dans le basin nord-occidental. Le cachalot enchaîne de façon régulière des cycles de sonde de 59 minutes en moyenne et n’est visible en surface que 15% du temps. La sonde se caractérise par une descente à une vitesse de 147m/min en moyenne. Le cachalot trouve ses proies en pleine eau, entre 470 et 719m de profondeur en général et consomme un minimum de 500 à 600 proies par jour. D’un cycle de sonde à l’autre, le cachalot semble suivre une direction constante, généralement parallèle au isobathes et parcours quotidien environ 50 km. Il serait important de vérifier, par un suivi des animaux à plus long terme, si les cachalots entreprennent un mouvement cohérent sur l’ensemble du basin nord occidental.

Il est nécessaire de déterminer de façon plus précise ces mouvements à grande échelle pour une meilleure protection de l’espèce et en vue d’une conservation globale de son habitat au sein du basin nord-occidental, ou le trafique maritime est particulièrement intense.

Il faut souligner que ces résultats sont obtenus uniquement par acoustique passive (écoute simple des sons émis par les cachalots). Les animaux ne sont pas dérangés par le sonar du bateau et ils ne sont approchés (généralement une seule fois) que pour estimer leur taille et photographier leur caudale (photo-identification). L’emploi de moyens classiques nous a permis d’enregistrer de grands progrès dans le domaine de l’écologie de cette espèce. Pour répondre à des questions plus précises sur leur habitat critique et uniquement pour améliorer la protection des cachalots, il pourra être justifié d’employer des moyens techniques plus invasifs tels que balises transmettrices VHF fixée par une ventouse.
REFERENCES BIBLIOGRAPHIQUES

Figure 1. L'échantillonnage acoustique et visuel lors des phases de 'recherche active' de cachalot, août 2002.
Figure 2. Graphique représentant le taux d'émission de clics (clic.s⁻¹) en fonction du temps lors d'une sonde complète. 'c' représentent les 'creaks', associé à la capture d'une proie.
Figure 3. Graphique représentant les variations (A) du taux de clics (s⁻¹) et (B) de la profondeur du cachalot (m) pendant les premières minutes de sonde.
Figure 4. Positions des stations acoustiques présentant une détection de cachalot, août 2002.
Figure 5. Positions des sondes de cachalots observés en août 2001 et 2002.